Copied to
clipboard

G = C24.309C23order 128 = 27

149th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.309C23, C23.415C24, C22.2092+ 1+4, C22.1592- 1+4, C42:5C4:13C2, C42:8C4:35C2, (C22xC4).83C23, C23.Q8.8C2, C23.146(C4oD4), (C2xC42).530C22, (C23xC4).104C22, C23.8Q8.23C2, C23.34D4.17C2, C23.11D4.11C2, C23.83C23:29C2, C23.63C23:69C2, C23.81C23:28C2, C24.C22.23C2, C2.32(C22.45C24), C2.C42.163C22, C2.48(C22.46C24), C2.36(C22.36C24), C2.43(C22.47C24), C2.58(C23.36C23), (C4xC4:C4):77C2, (C4xC22:C4).55C2, (C2xC4).136(C4oD4), (C2xC4:C4).279C22, C22.292(C2xC4oD4), (C2xC22:C4).163C22, SmallGroup(128,1247)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.309C23
C1C2C22C23C22xC4C23xC4C4xC22:C4 — C24.309C23
C1C23 — C24.309C23
C1C23 — C24.309C23
C1C23 — C24.309C23

Generators and relations for C24.309C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=c, e2=a, g2=b, ab=ba, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 372 in 206 conjugacy classes, 92 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C22xC4, C24, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C23xC4, C4xC22:C4, C4xC4:C4, C23.34D4, C42:8C4, C42:5C4, C23.8Q8, C23.63C23, C24.C22, C23.Q8, C23.11D4, C23.81C23, C23.83C23, C24.309C23
Quotients: C1, C2, C22, C23, C4oD4, C24, C2xC4oD4, 2+ 1+4, 2- 1+4, C23.36C23, C22.36C24, C22.45C24, C22.46C24, C22.47C24, C24.309C23

Smallest permutation representation of C24.309C23
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 9 45)(2 46 10 18)(3 19 11 47)(4 48 12 20)(5 16 38 44)(6 41 39 13)(7 14 40 42)(8 43 37 15)(21 57 49 29)(22 30 50 58)(23 59 51 31)(24 32 52 60)(25 61 53 35)(26 36 54 62)(27 63 55 33)(28 34 56 64)
(2 52)(4 50)(5 64)(6 8)(7 62)(10 24)(12 22)(14 28)(16 26)(17 19)(18 30)(20 32)(29 31)(33 35)(34 38)(36 40)(37 39)(42 56)(44 54)(45 47)(46 58)(48 60)(57 59)(61 63)
(1 55 51 41)(2 28 52 14)(3 53 49 43)(4 26 50 16)(5 20 62 30)(6 45 63 59)(7 18 64 32)(8 47 61 57)(9 27 23 13)(10 56 24 42)(11 25 21 15)(12 54 22 44)(17 33 31 39)(19 35 29 37)(34 60 40 46)(36 58 38 48)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,45)(2,46,10,18)(3,19,11,47)(4,48,12,20)(5,16,38,44)(6,41,39,13)(7,14,40,42)(8,43,37,15)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,64)(6,8)(7,62)(10,24)(12,22)(14,28)(16,26)(17,19)(18,30)(20,32)(29,31)(33,35)(34,38)(36,40)(37,39)(42,56)(44,54)(45,47)(46,58)(48,60)(57,59)(61,63), (1,55,51,41)(2,28,52,14)(3,53,49,43)(4,26,50,16)(5,20,62,30)(6,45,63,59)(7,18,64,32)(8,47,61,57)(9,27,23,13)(10,56,24,42)(11,25,21,15)(12,54,22,44)(17,33,31,39)(19,35,29,37)(34,60,40,46)(36,58,38,48)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,45)(2,46,10,18)(3,19,11,47)(4,48,12,20)(5,16,38,44)(6,41,39,13)(7,14,40,42)(8,43,37,15)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,64)(6,8)(7,62)(10,24)(12,22)(14,28)(16,26)(17,19)(18,30)(20,32)(29,31)(33,35)(34,38)(36,40)(37,39)(42,56)(44,54)(45,47)(46,58)(48,60)(57,59)(61,63), (1,55,51,41)(2,28,52,14)(3,53,49,43)(4,26,50,16)(5,20,62,30)(6,45,63,59)(7,18,64,32)(8,47,61,57)(9,27,23,13)(10,56,24,42)(11,25,21,15)(12,54,22,44)(17,33,31,39)(19,35,29,37)(34,60,40,46)(36,58,38,48) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,9,45),(2,46,10,18),(3,19,11,47),(4,48,12,20),(5,16,38,44),(6,41,39,13),(7,14,40,42),(8,43,37,15),(21,57,49,29),(22,30,50,58),(23,59,51,31),(24,32,52,60),(25,61,53,35),(26,36,54,62),(27,63,55,33),(28,34,56,64)], [(2,52),(4,50),(5,64),(6,8),(7,62),(10,24),(12,22),(14,28),(16,26),(17,19),(18,30),(20,32),(29,31),(33,35),(34,38),(36,40),(37,39),(42,56),(44,54),(45,47),(46,58),(48,60),(57,59),(61,63)], [(1,55,51,41),(2,28,52,14),(3,53,49,43),(4,26,50,16),(5,20,62,30),(6,45,63,59),(7,18,64,32),(8,47,61,57),(9,27,23,13),(10,56,24,42),(11,25,21,15),(12,54,22,44),(17,33,31,39),(19,35,29,37),(34,60,40,46),(36,58,38,48)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim11111111111112244
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C4oD4C4oD42+ 1+42- 1+4
kernelC24.309C23C4xC22:C4C4xC4:C4C23.34D4C42:8C4C42:5C4C23.8Q8C23.63C23C24.C22C23.Q8C23.11D4C23.81C23C23.83C23C2xC4C23C22C22
# reps111111132111116411

Matrix representation of C24.309C23 in GL6(F5)

100000
010000
004000
000400
000010
000001
,
400000
040000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
010000
100000
000100
001000
000030
000003
,
400000
040000
002000
000300
000001
000010
,
100000
040000
001000
000400
000010
000004
,
200000
020000
002000
000300
000010
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C24.309C23 in GAP, Magma, Sage, TeX

C_2^4._{309}C_2^3
% in TeX

G:=Group("C2^4.309C2^3");
// GroupNames label

G:=SmallGroup(128,1247);
// by ID

G=gap.SmallGroup(128,1247);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c,e^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<